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We present a new method for solving numerically the equations associated with solvation
continuum models, which also works when the solvent is an anisotropic dielectric or an
ionic solution. This method is based on the integral equation formalism. Its theoretical
background is set up and some numerical results for simple systems are given. This method
is much more effective than three-dimensional methods used so far, like finite elements or
finite differences, in terms of both numerical accuracy and computational costs.

1. Introduction

Solvent effects play a crucial role in most of the chemical and biological
processes. A convenient and fruitful way to deal with such effects in molecular me-
chanics or quantum chemistry calculations consists in making use of the so-called
solvation continuum models. In particular, the present paper focuses on a specific ex-
ample of this kind of models, namely the polarizable continuum model (in short, PCM),
which has spread out since its introduction in 1981 [8] because of its adaptability and
accuracy; in this method, the solute molecule under study is located inside a molecular
cavity surrounded by a dielectric medium which models the solvent (see figure 1).

We refer the reader to [11] for a comprehensive review of the whole class of
these models, with particular attention to PCM, and of the various numerical methods
in use for solving the corresponding equations.

One of the basic quantities that has to be computed is the electrostatic interaction
between two charge distributions ρ and ρ′ carried by the solute molecule. In PCM,
this interaction takes into account the polarization of the dielectric medium modelling
the solvent. Its mathematical expression reads

EI (ρ, ρ′) =

∫
R3
ρ′(x)V (x) dx,
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Figure 1. Scheme of solvation in the polarizable continuum model.

where V (x) is the electrostatic potential generated by the charge distribution ρ(x). For
standard PCM, it is solution to the equation

− div
(
ε(x)∇V (x)

)
= ρ(x) (1.1)

with ε(x) = 1 inside the cavity and ε(x) = εs outside (εs denotes the macroscopic
dielectric constant of the solvent, εs = 78.6 for water).

Equation (1.1) fully accounts for the dielectric polarization phenomenon. This
equation may be rewritten as

−∆V = ρ+ ρa, (1.2)

where ρa may be regarded as an apparent charge. It is easy to see that, when ρ
is located inside the cavity, the apparent charge ρa is supported on the interface Γ.
Indeed, inside the cavity (in Ωi), ε(x) = 1 and then

ρa = −∆V + div(ε∇V ) = −∆V + ∆V = 0,

and outside the cavity (in Ωe), ε(x) = εs and therefore

ρa = −∆V + div(ε∇V ) = −1− εs

εs
div(ε∇V ) =

1− εs

εs
ρ = 0,

as ρ = 0 in Ωe. A classical way to get the electrostatic energy EI consists in com-
puting the surface density σ of the apparent charge ρa by an integral equation method.
This technique allows one to transform the three-dimensional problem (1.1) which is,
moreover, posed on an unbounded domain, namely R3, into a two-dimensional problem
posed on the bounded domain Γ (see [11], and [5] for instance for the mathematical
aspects). This significantly reduces the computational effort.
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Over the last few years, some extensions of the standard solvation continuum
models have been proposed to cover the cases when the solvent is an ionic solution
or a liquid crystal.

In the former case [10], equation (1.1) is replaced by the so-called linearized
Poisson–Boltzmann equation

− div
(
ε(x)∇V (x)

)
+ ε(x)κ2(x)V (x) = ρ(x) (1.3)

with

ε(x) =

{
1 if x ∈ Ωi,
εs if x ∈ Ωe,

and

κ(x) =

{
0 if x ∈ Ωi,
κs if x ∈ Ωe.

The constant κs accounts for the ion screening: 1/κs is the Debye lenght.
In the latter case [6], equation (1.1) keeps the same formal expression,

− div
(
ε(x) · ∇V (x)

)
= ρ(x), (1.4)

but the dielectric constant ε(x) is no longer a scalar: it is a 3×3 anisotropic symmetric
tensor so that

ε(x) =

{
I

3
if x ∈ Ωi,

ε
s

if x ∈ Ωe

( I
3

denotes here the 3× 3 unit tensor).
In both cases, it is of course still possible to define an apparent charge ρa by

equation (1.2), but this charge is now supported both on the interface Γ and in the
external medium Ωe. That is why integral equation methods have not been applied, so
far as we know, in those cases: until now, three-dimensional methods have been used,
like the finite difference method (FDM) for the Poisson–Boltzmann equation (1.3) [10],
or a finite-element-type method (FEM) for equation (1.4) [6].

Our purpose here is to show that integral equation methods, which are more
competitive in terms of computational effort, may actually also be used in these two
cases.

In section 2, we present the theoretical bases which underlie the method that
we propose. We have chosen to collect in section 2.1 what is necessary to know for
implementing this method. We believe that the proofs of these mathematical results
are useful for a deep understanding of the method. Nevertheless, we have regrouped
them in section 2.2, which is independant from the others. Thus, the reader who is less
interested by the mathematical counterpart of this work, may easily skip section 2.2
and proceed directly to section 3 where we show how to implement these results in
Hartree–Fock calculations and where we give some satisfactory numerical results for
real chemical systems. Conclusions and trends for future work concerning analytical
derivatives and inhomogeneous external media are presented in section 4.
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2. Theoretical background

Let us consider two charge distributions, both located inside the cavity Ωi. Our
aim is to compute the interaction energy

EI (ρ, ρ′) =

∫
R3
ρ′V ,

where the electrostatic potential V is the unique solution (in a suitable functional
space) to equation (1.1) for the standard PCM, equation (1.3) for ionic solutions, or
equation (1.4) for liquid crystals.

2.1. The integral equation approach

Notations: If u is a function defined on R3 such that u|Ωi and u|Ωe are “regular
enough”, we denote by ui (respectively, ue) the trace of u|Ωi (respectively, u|Ωe) on
the interface Γ, and by [u] = ui − ue the jump of u passing through Γ. The usual
scalar product on L2(Γ) is denoted 〈· , ·〉Γ (for all v and w in L2(Γ), 〈u, v〉Γ =

∫
Γ uv).

First, we notice that the three equations, (1.1), (1.3) and (1.4), may be unified
under the same formalism

(I)


LiV = ρ in Ωi,
LeV = 0 in Ωe,
[V ] = 0 on Γ,
[∂LV ] = 0 on Γ.

(2.5)

The operators Li = −∆ and Le are second-order elliptic partial differential operators
with constant coefficients. We have

• Leu = −εs∆u for the standard PCM (1.1),

• Leu = −εs∆u+ εsκ
2
su for ionic solutions (1.3),

• Leu = − div(ε
s
· ∇u) for liquid crystals (1.4).

The jump condition [V ] = 0 means that the potential V in continuous across the
interface Γ. With the notations defined above, this condition reads

Vi − Ve = 0 on Γ.

The equality [∂LV ] = 0 is a formal expression of the jump condition of the gradient
of the potential. The jump of the gradient only depends on the second-order terms of
the operators Li and Le. The condition [∂LV ] = 0 may be written as

∂Vi − ∂Ve = 0 on Γ (2.6)

with, for all x ∈ Γ,

∂Vi(x) = (∇u)i(x) · n(x) =

(
∂u

∂n

)
i
(x)
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and

∂Ve(x) =
(
εs · (∇u)e(x)

)
· n(x),

where n(x) is the outward pointing normal at point x.
For the cases of the standard PCM (1.1) and of the ionic solutions (1.3), i.e.,

when the dielectric constant is a scalar, equation (2.6) takes the well-known form(
∂V

∂n

)
i
− εs

(
∂V

∂n

)
e

= 0.

What permits the use of integral equations to get the potential V is the knowledge
of analytical expressions for the Green functions Gi and Ge of Li and Le considered
as operators on R3. As explained below, this enables us to transform the first two
equations in (I) into integral equations on Γ, that can be easily solved with standard
numerical methods.

It is well known that the Green function of the operator Li = −∆ on R3 is

Gi(x, y) =
1

4π|x− y| ∀(x, y) ∈ R3 × R3, x 6= y.

We recall that, if ρ0 is a charge distribution in R3, the potential

φ0(x) =

∫
R3
ρ0(y)Gi(x, y) dy

is the Newton potential associated with ρ0 and corresponds to the electrostatic potential
created by ρ0 in the vacuum. It is solution to the Poisson equation

−∆φ0 = ρ0 in R3.

Concerning the three different operators Le, their Green functions on R3 are the fol-
lowing ones:

• for Le = −εs∆ (standard PCM), we have, of course,

Ge(x, y) =
1

4πεs|x− y|
;

• for Le = −εs∆ + εsκ
2
s (ionic solutions),

Ge(x, y) =
e−κs|x−y|

4πεs|x− y|
;

this kernel is associated with a short-range Yukawa potential;

• for Le = − div(ε
s
· ∇) (liquid crystals), we obtain

Ge(x, y) =
1

4π
√

det(ε
s
)(ε−1

s
· (x− y), (x− y))1/2

.
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We denote by Si, Di and D∗i the following operators: for u ∈ L2(Γ) and x ∈ Γ,

(Si · u)(x) =

∫
Γ
Gi(x, y)u(y) dy,

(Di · u)(x) =

∫
Γ
∂yGi(x, y)u(y) dy,(

D∗i · u
)
(x) =

∫
Γ
∂xGi(x, y)u(y) dy,

where ∂xGi(x, y) = (∇xGi(x, y)) · n(x) and ∂yGi(x, y) = (∇yGi(x, y)) · n(y).
These operators are well-known in the theory of integral equations. They are

three of the four components of the Calderon projector [5]. We recall some of their
properties: the operator Si is self-adjoint and D∗i is the adjoint of Di for the scalar
product 〈· , ·〉Γ. Besides, SiD

∗
i = DiSi. We also define similar operators for the Green

function Ge, that we need below:

(Se · u)(x) =

∫
Γ
Ge(x, y)u(y) dy,

(De · u)(x) =

∫
Γ
∂yGe(x, y)u(y) dy,

where ∂yGe(x, y) = (εs · ∇yGe(x, y)) · n(y).
At last, if ρ0 and ρ′0 are two charge distributions in R3, we denote by

D(ρ0, ρ′0) =

∫∫
R3×R3

Gi(x, y)ρ0(x)ρ′0(y) dx dy

their interaction energy in the vacuum.
We can now state our main result, which is valid for each of the three physical

contexts that we consider here (standard solvent, anisotropic solvent or ionic solution).

Theorem. Let ρ be a charge distribution located inside the cavity Ωi.

(1) There exists an apparent surface charge ρa supported on Γ so that the interaction
energy between ρ and another charge distribution ρ′ also located inside the cavity
Ωi reads

EI (ρ, ρ′) = D(ρ, ρ′) +D(ρa, ρ′).

(2) We denote by φ the electrostatic potential created by ρ in the vacuum. The density
σ of the apparent surface charge ρa is the unique solution to the equation

A · σ = g (2.7)

with

A =

(
I

2
−De

)
Si + Se

(
I

2
+D∗i

)
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and

g = −
(
I

2
−De

)
· φi − Se · ∂φi.

Remark 1. For the standard PCM, equation (2.7) may be simplified. Indeed, in this
case, the Green functions Gi and Ge are proportional, and we have Se = (1/εs)Si and
De = Di. Denoting by En = −∂φi the normal component of the electric field created
by ρ in the vacuum and using the equality (I/2−Di) · φi +Si · ∂φi = 0 (see lemma 1
below), equation (2.7) may be rewritten as

Si

[(
I

2
−D∗i

)
+

1
εs

(
I

2
+D∗i

)]
· σ = − (εs − 1)

εs
Si · En.

After multiplication by (εs/(εs − 1))S−1
i , we obtain(

εs + 1
εs − 1

I

2
−D∗i

)
· σ = −En, (2.8)

which is exactly the same as equation (A1) in [1], for instance.

2.2. Mathematical proofs

Some tools are used in this section which are standard in mathematics but not in
theoretical chemistry. In order to simplify, we forget all considerations of functional
analysis. In particular, we assume that the cavity is smooth and that the charge distri-
butions belong to suitable functional spaces. Let us notice that the latter assumption
is always satisfied for charge distributions used in practice in molecular mechanics
or in quantum chemistry. On the other hand, the former one is obviously true for a
spherical or an ellipsoidal cavity, and also for some molecular shape cavities (as those
defined as isodensity surfaces), but not, for instance, for molecular cavities defined
as intersections of spheres. The extension of the forthcoming theoretical results to
general non-smooth cavities is a difficult mathematical issue which is out of the scope
of the present article.

Proof of the theorem. Let us consider a charge distribution ρ′ located inside Ωi and
let us denote

φ′(x) =

∫
R3
Gi(x, y)ρ′(y) dy,

the electrostatic potential generated by ρ′ in the vacuum. Let

f (x) =

{∫
R3 Gi(x, y)ρ(y) dy if x ∈ Ωi,∫
R3 Ge(x, y)ρ(y) dy if x ∈ Ωe,

and

W = V − f.
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This latter function satisfies {
LiW = 0 in Ωi,
LeW = 0 in Ωe.

With these notations,

EI (ρ, ρ′) =

∫
R3
ρ′f +

∫
R3
ρ′W.

The first term is easy to compute. Indeed, since we assume that the charge distributions
ρ and ρ′ are supported in Ωi,

E1 =

∫
R3
ρ′(x)f (x) dx =

∫∫
R3×R3

ρ′(x)ρ(y)
4π|x− y| dx dy = D(ρ, ρ′).

Our purpose is to compute the second term. For that, we use an integral representation
of the “apparent” potential W .

Lemma (of representation). Let us consider u so that{
Liu = ρi in Ωi,
Leu = ρe in Ωe.

Then, if u, ρi and ρe belong to “suitable” functional spaces,

(i) for all x ∈ Ωi,

u(x) =

∫
Γ
Gi(x, y)∂ui(y) dy −

∫
Γ
ui(y)∂yGi(x, y) dy +

∫
Ωi

Gi(x, y)ρi(y) dy;

(ii) for all x ∈ Ωe,

u(x) = −
∫

Γ
Ge(x, y)∂ue(y) dy +

∫
Γ
ue(y)∂yGe(x, y) dy +

∫
Ωe

Ge(x, y)ρe(y) dy;

(iii) for all x ∈ Γ,

1
2
ui(x) =

∫
Γ
Gi(x, y)∂ui(y) dy −

∫
Γ
ui(y)∂yGi(x, y) dy +

∫
Ωi

Gi(x, y)ρi(y) dy;

(iv) for all x ∈ Γ,

1
2
ue(x) = −

∫
Γ
Ge(x, y)∂ue(y) dy +

∫
Γ
ue(y)∂yGe(x, y) dy +

∫
Ωe

Ge(x, y)ρe(y) dy.

Such results are standard in the theory of integral equations. Nevertheless, for the
reader’s convenience, we will sketch a proof of this lemma at the end of the present
section.



E. Cancès, B. Mennucci / Solvation continuum models 317

Using statement (i) of the lemma with u = W , we obtain

E2 =

∫
R3
ρ′(x)W (x) dx

=

∫
R3
ρ′(x)

(∫
Γ
Gi(x, y)∂Wi(y) dy −

∫
Γ
Wi(y)∂yGi(x, y) dy

)
dx

=

∫
Γ
∂Wi(y)

(∫
R3
ρ′(x)Gi(x, y) dx

)
dy

−
∫

Γ
Wi(y)

(∫
R3
ρ′(x)∂yGi(x, y) dx

)
dy

= 〈∂Wi,φ
′
i〉Γ − 〈Wi, ∂φ

′
i〉Γ,

We now apply twice statement (iii) of the lemma, firstly with u = W , which gives

Si · ∂Wi −Di ·Wi =
1
2
Wi, (2.9)

then with u = φ, and we obtain

Si · ∂φi −Di · φi = −1
2
φi. (2.10)

Let us consider the quantity σ = S−1
i ·Wi, which has the dimension of a surface charge

density. Using equations (2.9) and (2.10) we obtain

E2 = 〈∂Wi,φ
′
i〉Γ − 〈Wi, ∂φ

′
i〉Γ

=

〈
S−1

i

(
I

2
+Di

)
·Wi,φ

′
i

〉
Γ
−
〈
Wi,S

−1
i

(
−I

2
+Di

)
· φ′i
〉

Γ

=

〈(
I

2
+D∗i

)
· σ,φ′i

〉
Γ
−
〈(
−I

2
+D∗i

)
· σ,φ′i

〉
Γ

= 〈σ,φ′i〉Γ.
This equality may be written

E2 = D(ρa, ρ′),

where ρa is the surface charge of density σ. This closes the proof of the first statement
of our theorem.

Let us now turn to the proof of the second statement.
The functions Wi, We, ∂Wi and ∂We satisfy the following 4× 4 system

(II)


Si · ∂Wi −Di ·Wi = (1/2)Wi ,
Se · ∂We −De ·We = −(1/2)We,
Wi −We = fe − fi,
∂Wi − ∂We = ∂fe − ∂fi.

The first two equations come from a direct application of statements (iii) and (iv) of
the lemma with u = W . The two latter ones are consequences of the jump conditions,
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Vi − Ve = 0 and ∂Vi − ∂Ve = 0. As f = φ in Ωi and, moreover, from statement (iv)
of the lemma applied with u = f , Se · ∂fe −De · fe = −(1/2)fe, a straightforward
algebraic manipulation on system (II) gives equation (2.7).

In order to prove the uniqueness result, we consider two solutions σ and σ′ to
equation (2.7) and we denote τ = σ − σ′. We have A · τ = 0, and that means((

I

2
−De

)
Si + Se

(
I

2
+D∗i

))
· τ = 0. (2.11)

Let us define W so that

W |Ωi (x) =

∫
Γ
Gi(x, y)τ (y) dy

and W |Ωe is the unique solution (in a suitable weighted Sobolev space) to{
LeW = 0 in Ωe,
W = W i on Γ.

From (2.11) we deduce ∂W i−∂W e = 0. Besides, as by construction W is continuous
across Γ,∫

R3

(
ε(x) · ∇W (x)

)
· ∇W (x) =

∫
Ωi

∇W · ∇W +

∫
Ωe

(
εs · ∇W

)
· ∇W

=

∫
Γ
W i∂W i −

∫
Γ
W e∂W e

=

∫
Γ
W i
(
∂W i − ∂W e

)
= 0.

Thus ∇W = 0 almost everywhere, and therefore W = 0 which implies τ = 0. �

We conclude this section with the

Proof of the lemma. The proofs of the four statements of the lemma are based upon
the following Green formula, which is nothing but a multidimensional integration by
part: let Ω be a bounded domain of R3 with a piecewise smooth boundary ∂Ω, and
let L be a second-order partial differential operator of the form

L · v = − div(ε · ∇v) + cv,

where ε is a 3× 3 tensor field and c is a scalar field. We have, for all v and w regular
enough, ∫

Ω
(L · v)w +

∫
∂Ω

∂v

∂nL
w =

∫
Ω

(L · w)v +

∫
∂Ω

∂w

∂nL
v, (2.12)

where ∂u/∂nL = (ε · ∇u) · n (n denotes, as usual, the outward pointing normal).



E. Cancès, B. Mennucci / Solvation continuum models 319

Proof of statement (i). Let x ∈ Ωi and η > 0 so that Bx(η) ⊂ Ωi (where Bx(η) =
{y/|x − y| < η}). We write the Green formula (2.12) for Ω = Ωi\Bx(η), L = Li,
v(y) = Gi(x, y) and w(y) = u(y). As Li · v = 0 and Li · w = ρi in Ω, we obtain∫

Ω
Gi(x, y)ρi(y) dy +

∫
∂Ω
Gi(x, y)

∂u

∂n
(y) dy =

∫
∂Ω
u(y)

∂Gi

∂ny
(x, y) dy.

Thus ∫
Ω
Gi(x, y)ρi(y) dy +

∫
Γ
Gi(x, y)∂ui(y) dy −

∫
Γ
ui(y)

∂Gi

∂ny
(x, y) dy

=

∫
Sx(η)

u(y)
∂Gi

∂ny
(x, y) dy −

∫
Sx(η)

Gi(x, y)
∂u

∂n
(y) dy.

We let η go to zero, which gives∫
Sx(η)

u(y)
∂Gi

∂ny
(x, y) dy → u(x)

and ∫
Sx(η)

Gi(x, y)
∂u

∂n
(y) dy → 0.

Finally,

u(x) =

∫
Γ
Gi(x, y)∂ui(y) dy −

∫
Γ
ui(y)∂Gi(x, y) dy +

∫
Ω
Gi(x, y)ρi(y) dy.

Proof of statement (ii). Let x ∈ Ωe and η > 0 so that Bx(η) ⊂ Ωe. Let
R > 0 so that (Ωi ∪ Bx(η)) ⊂ B0(R). We use the Green formula (2.12) for Ω =
B0(R)\(Bx(η) ∪Ωi), v(y) = Ge(x, y) and w(y) = u(y). As Le · v = 0 and Lew = ρe

in Ω, we obtain∫
Ω
Ge(x, y)ρe(y) dy +

∫
∂Ω
Ge(x, y)

∂u

∂n
(y) dy =

∫
∂Ω
u(y)

∂Ge

∂ny
(x, y) dy.

Thus ∫
Ω
Ge(x, y)ρe(y)−

∫
Γ
Ge(x, y)∂ue(y) dy +

∫
Γ
ue∂Ge(x, y) dy

=

∫
Sx(η)

u(y)
∂Ge

∂ny
(x, y) dy −

∫
Sx(η)

Ge(x, y)
∂u

∂n
(y) dy

+

∫
S0(R)

u(y)
∂Ge

∂ny
(x, y) dy −

∫
S0(R)

Ge(x, y)
∂u

∂n
(y) dy.

If u and ρe belong to suitable functional spaces, we obtain statement (ii) letting η go
to zero and R go to infinity.
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We skip the proofs of statements (iii) and (iv) which are a bit more technical
(the outlines may be found in [5], for instance). We just point out that the factor 1/2
comes from the fact that, when x belongs to Γ, Sx(η) ∩Ωi is no longer a sphere but
only half a sphere (asymptotically, when η goes to zero). �

3. Numerical method and results

We use here the notations defined in the previous section.

3.1. Boundary element approximation

As for the apparent surface charge (ASC) method used for standard PCM [11],
we use a boundary element method (BEM) to solve equation (2.7) (i.e., Aσ = g), and
to compute the second term E2 = D(ρa, ρ′) of the interaction energy E1(ρ, ρ′). For
this purpose, we firstly build a tessellation of the boundary Γ consisting of K tesserae
(Tk)16k6K . For the calculations, we have chosen a P0-approximation. That means
that the charge density σ is approximated by a piecewise constant function (constant
on each tessera of the tessellation). Let us denote by σk the approximate value of the
density σ on the tessera Tk. There comes at once

D(ρa, ρ′) =
K∑
k=1

σk

(∫
Tk

φ′(y) dy

)
. (3.13)

With this approximation, equation (2.7) amounts to a linear system of order K denoted

[A] · [σ] = [g],

where [σ] is the column vector [σk], [A] is a K ×K matrix, and [g] a column vector
depending on the charge distribution ρ. We obtain for all 1 6 k, k′ 6 K,

Akk
′

=

∫
Tk

dx
∫

Γ
dy
∫
Tk′

dz k(x, y, z) (3.14)

with

k(x, y, z) =

((
δ(x− y)

2
− ∂yGe(x, y)

)
Gi(y, z)

+Ge(x, y)

(
δ(y − z)

2
+ ∂yGi(y, z)

))
and

gk =

∫
Tk

dx
∫

Γ
dy

(
−
(
δ(x− y)

2
− ∂yGe(x, y)

)
φi(y)−Ge(x, y)∂φi(y)

)
. (3.15)

The two above expressions come from a variational calculation.
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At this stage, the remaining problems are

• the computation of φi, ∂φi and φ′i (we tackle this problem in the next section);

• the numerical computation of the various surface integrals in (3.13)–(3.15). When
Γ is smooth, one can prove that for fixed x, the singularities of the kernels
Gi(x, y), Ge(x, y), ∂Gi(x, y) and ∂Ge(x, y) are all in 1/|x − y|. Therefore, all
these singularities are integrable on a (two-dimensional) surface. We have used
Gaussian integration in suitable coordinates to perform these quadratures, which
gives good results.

3.2. Application to Hartree–Fock SCF calculations

Let us deal at first with the nuclei repulsion term. In this case, ρ = qδ(· − x )
and ρ′ = q′δ(· − x′) are two point charges, and thus the functions φi, ∂φi and φ′i are
very easy to be computed. Indeed, for all x ∈ Γ,

φi(x) =
q

4π|x− x| ,

∂φi(x) =−q (x− x) · n(x)
4π|x− x|3 ,

φ′i =
q′

4π|x− x′| .

Let us now turn to the electronic energy. From now on, (χp)16p6N denotes the set of
the atomic orbitals. We use the following classical notations:

Ipq(x) =

∫
R3

χp(y)χq(y)
4π|x− y| dy

and

Ipqrs =

∫
R3

∫
R3

χp(x)χq(x)χr(y)χs(y)
4π|x− y| dx dy.

In the PCM, the Fock matrix reads (for a spinless model to simplify the notations)

Fµν = hµν +Gµν (P )

with

hµν =
1
2

∫
R3
∇χµ · ∇χν −EI

(
ρnuc,χµχν

)
and

Gµν (P ) =
∑
κ,λ

Pκλ

(
EI (χκχλ,χµχν)− 1

2
Iκνµλ

)
,
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where

ρnuc =
M∑
k=1

zkδxk

is the charge distribution of the M nuclei and P is the one-electron density matrix.
Denoting

ρel =
∑
κ,λ

Pκλχκχλ

the electronic density and using the results obtained in the previous section, we write
the Fock matrix as

Fµν = F 0
µν +D

(
ρnuc

a + ρel
a ,χµχν

)
,

where F 0 denotes the standard Fock matrix (for the molecule in the vacuum) and ρnuc
a

and ρel
a are the apparent surface charges created by the nuclei and the electronic cloud,

respectively. To compute the Fock matrix, we only need to know for all x ∈ Γ,

φi(x) =
M∑
k=1

zk
4π|x− xk|

−
∑
κ,λ

PκλIκλ(x),

∂φi(x) =−
M∑
k=1

zk
(x− xk) · n(x)

4π|x− xk|
−
∑
κ,λ

Pκλ
(
∇Iκλ(x) · n(x)

)
,

φ′i =−Iµν(x).

When atomic orbitals are contracted gaussians, which is the case in most of the quantum
chemistry calculations for molecules, the functions Iκλ and their gradients are very
easy to compute and that makes this method very effective.

Remark 2. The electronic distribution is not rigorously located inside the cavity: there
is always an “electronic tail” spreading outside. For standard cavities and basis func-
tions, the approximation that we make when computing the Fock matrix as above is
quite valid. In some special cases, for example, when diffuse functions are used to
compute excited states, this approximation may be too crude. Let us notice, however,
that the same problem occurs when computing the standard PCM equation (1.1) with
the ASC method (i.e., starting from equation (2.8)).

3.3. Numerical results

In this section, we report a selection of results obtained with the implementation
on GAMESS package [9] of the new formalism presented above within the PCM
framework.

As the scope of the present article is the detailed presentation of the theoretical
bases which underlie the method, we have limited our numerical study to some very
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simple systems: the solute molecules are small and the cavity is a single sphere even
for polyatomic solutes. Besides, the reported values are not analyzed in their real
chemical meaning, but only as a proof of the reliability of the method. Other more
complex systems are studied in a parallel work [3] dedicated to a detailed analysis of the
potentialities and the effective performances of this new integral equation formalism, in
which we also check that the new method, when applied to standard isotropic liquids,
gives the same results as standard PCM (apart from numerical approximations).

The results reported here regard two solute–solvent systems of different natures.
The first one is an application to intrinsically anisotropic dielectrics, characterized by
a tensorial permittivity. In the specific case that we have considered, the chosen sol-
vent is the liquid crystal known with the acronym 7CB (4-n-heptyl-4′-cyanobiphenyl),
which is nematic at room temperature (its transition temperature to the isotropic phase
is 312 K). The main characteristic of this kind of “mesophases” is that they exhibit
long-range orientational order with the long axes of the anisometric component mole-
cules tending to align parallel to a space-fixed axis called the director. From a physical
point of view, a consequence of this is that their permittivity is described by a sym-
metric tensor which has two eigenvalues: for 7CB, the double eigenvalue is ε⊥ = 5.54
and the simple eigenvalue is ε‖ = 17.1 (in other words, ε‖ is the permittivity along the
direction of preferential alignment of solvent molecules, and ε⊥ the value in the plane
normal to this direction). Because of the structural specificity mentioned above, solute
molecules dissolved in nematic liquid crystals are subject to anisotropic forces which
lead them to orient. Usually, a rod-like dipolar molecule orders such that its long axis
is preferantially oriented parallel to the nematic director. One of the major sources of
this orientational ordering of rigid solutes in liquid crystals is given by electrostatic
interactions between the polar solute and the solvent molecules. Other minor contri-
butions come from dispersion forces and short-range repulsion. The method we have
presented above allows us to get in a very efficient way the electrostatic contribution.
We have limited ourselves to the calculation of this term. A more accurate evalua-
tion of the ordering mechanism can be easily obtained within PCM framework [7],
by including the cavitation term, but it is not performed here as out of the scope of
the present paper. In the following figure we have reported the electrostatic contribu-
tion to the solvation free energy of HF in 7CB with respect to the angle between the
solute bond and the solvent director. These results are obtained with the HF molecule
embedded in a sphere of radius 1.734 Å and described with a standard DZV basis set.

As we can easily see, the differences between the various orientations are quite
small, but small is also the anisotropy of the dielectric; anyway, it appears that the
stablest configurations (i.e., those with the most negative ∆Gsol) are those with the
HF bond parallel to the axis along which the dielectric tensor has the greatest value
(clearly, the graph is symmetric with respect to the angle value of 90◦). In the figure
we also report as limit values, those obtained for two hypothetical isotropic media with
permittivity equal to each of the two different eigenvalues of ε for 7CB.

The second application of the new method presented in the previous sections is
the analysis of the solvation behavior of a probe solute in salt solutions of various ionic
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Figure 2. ∆Gsol values of HF in 7CB with respect to the angle between the bond axis and the z-axis.

Figure 3. Ion contribution to the solvation free energy of H− in water containing a 1 : 1 salt at variable
concentrations. I is the bulk ionic strength in mol/l.

strengths. Verification of this new algorithm was accomplished by calculating the ion
contribution to the solvation free energy of a spherical charged solute (here the anion
H−) embedded in a sphere of radius 1.4 Å in a solution of water (dielectric constant =
78.5) and a 1 : 1 salt at variable concentration. The ion contribution, defined as the
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free energy in solution minus the energy calculated at zero ionic strength, is reported
in figure 3 with respect to the bulk ionic strength I expressed in mole per litre.

Continuum models accounting for ionic screening have found an increasing appli-
cation in the modelling of hydrated molecules, particularly biological macromolecules.
Our future intent is to follow this trend and try to exploit the present algorithm to un-
derstand many interesting phenomena related to biological systems. However, in the
present paper we have limited our analysis to a very simple system; the reason of this
choice is that for the moment our scope is to stress even if with an almost propedeutic
example, the reliability of this extension of pure integral equation methods to problems
usually solved with three-dimensional methods.

4. Conclusion and future trends

We have shown in this article that integral equation methods are also efficient
for the above extensions of solvation continuum models when the solvent is an ionic
solution or a liquid crystal. In fact, these methods are generally relevant from the
moment that the medium which spreads outside the cavity is homogeneous.

In all these cases, integral equations methods are much more efficient than three-
dimensional methods as finite difference or finite element methods used so far, because

(1) the computational effort is lower,

(2) no approximation is made to account for boundary conditions.

Moreover, it becomes easy to compute analytical derivatives of the energy with
respect to physical parameters, such as the temperature in the case of ionic solutions,
or as the orientation of the molecule with respect to the principal directions of the
anisotropic tensor ε

s
in the case of liquid crystals. Analytical derivatives with respect

to nuclear coordinates, which are useful for geometry optimization [4], are more dif-
ficult to be computed because of the change of the cavity shape, but are nevertheless
accessible [2].

On the other hand, for an inhomogeneous external medium, three-dimensional
methods are required. However, if there is in the model an inhomogeneous zone in
the external medium, it is usually located in the neighbourhood of the molecule under
study. It is therefore possible to put both the molecule and the inhomogeneous zone in a
bigger cavity of simple shape (for example, a cube) and to couple integral methods (for
solving the external problem) with three-dimensional methods (for solving the internal
problem). The advantage of such a method, compared with pure three-dimensional
methods, is to take into account the boundary conditions rigorously. We intend to look
soon into inhomogeneous models.
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